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Riemann-Cartan-Weyl Quantum Geometry. II 
Cartan Stochastic Copying Method, 
Fokker-Planck Operator and Maxwell-De Rham 
Equations 
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We reintroduce the Riemann-Cartan-Weyl (RCW) spacetime geometries of 
quantum mechanics [Rapoport (1996), int. Z Theor. Phys. 35(2)] in two novel 
ways: first, through the covariant formulation of the Fokker-Planck operator of 
the quantum motions defined by these geometries, and second, by stochastic 
extension of Cartan's development method. The latter is a gauge-theoretic 
formulation of nonlinear diffusions in spacetime in terms of the stochastic 
differential geometry associated to the RCW geometries with Weyi torsion. The 
Weyl torsion plays the fundamental role of describing the first moment 
(incorporating also the fluctuations due to the second moment) of the stochastic 
diffusion processes. In this article we present the most general expression of the 
Weyi torsion one-form given in terms of its de Rham decomposition into the 
exact component associated with the 0-spin field ~ and two electromagnetic 
potentials, one the codifferential of a 2-form and the other a harmonic 1-form. 
We thus give an original description of the Maxwell theory and its relation to 
torsion. We associate these electromagnetic potentials with the irreversibility of 
the diffusions. In an Appendix, we give a self-contained presentation of the theory 
of diffusions on manifolds and the stochastic calculi as a basis for the Cartan 
stochastic copying method. 

INTRODUCTION 

In a previous article (Rapoport, 1996a) we introduced the Riemann- 
Cartan-Weyl (RCW) spacetime geometry, a metric g-compatible connection 
with torsion restricted to its trace component, associated to a trivial Weyl 
one-form of the form Q = d In ~, where the scalar field t~ introduces a 
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conformal structure on the tangent space to the spacetime-manifold M; we 
further defined a family of Laplacian operators associated to these geometrical 
structures. These Laplacians were defined to act on differential forms of 
arbitrary degree, following Witten's conception of supersymmetric systems, 
in which forms of odd (even) degree represent fermions (bosons). These 
Laplacians were taken to define quantum fluctuational processes, since they 
define the infinitesimal generators of Markovian diffusion semigroups. We 
found that the quantum fluctuations described by higher than 0-spin fields 
depend solely in the data of the RCW connection: in the case of exact Q, 
these are g and t~. 

These constructions can be extended to include nontrivial trace-torsion 
Weyl one-forms, i.e., Q has, in addition to the exact one-form described 
above, nonexact terms. This extension is still rooted in scale transformations: 
In our introduction of the RCW geometries in Section 2 of Rapoport (1996a), 
we saw that one could start with a nonexact trace-torsion one-form, and 
through the lambda scale transformations due to Einstein and Kauffmann 
described there, one can obtain the full trace torsion one-form. 

The first objective of this article is precisely the extension of our previous 
constructions to the case of the full trace-torsion one-form, which we shall 
determine by the procedure of applying a strong theorem of global analysis: 
the de Rham-Kodaira-Hodge decomposition of one-forms, with the addi- 
tional requirement that the covariant backward Fokker-Planck operator has 
a time- (evolution parameter-) invariant probability density i.e., a density 
independent of the time-evolution parameter "r (which is not to be confused 
with the relativistic time coordinate). This approach will mark the appearance 
of two remarkable electromagnetic potentials, the codifferential of a 2-form 
and a harmonic 1-form, so both are divergenceless, and the harmonic form 
has a zero field (away from the nodes of @), and thus we shall name it the 
Aharonov-Bohm potential. This divergenceless character is precisely what 
defines in the stationary state a conserved probability vector field which 
characterizes the irreversibility of the fluctuations. Thus we shall have a 
gauge-theoretic characterization of irreversibility, i.e., the surgence of a local 
arrow of the time-evolution parameter related to the nonexact components 
of the trace-torsion. This gauge-theoretic characterization of the microscopic 
irreversibility of quantum fluctuations is new and contrasts with the approach 
of the Brussels-Austin groups, which relates the surgence of the time arrow 
to the existance of two analytical semigroups that appear in the study of 
large Poincar6 systems. In the approach by Prigogine (1995) it is the presence 
of singularities in the continuous spectrum of classical and quantum systems 
which produces the time arrow; for a critical discussion of Prigogine's 
approach to irreversibility see Bricmont (1996). 
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Our presentation of this theory shall diverge from our previous article, 
in the sense that rather than positing the solution of taking the Laplacian of 
the RCW structure as the infinitesimal generator of the Markovian diffusion 
processes, we shall instead start from the opposite direction: Starting from 
the form of the infinitesimal generator of a probability-conserving Markovian 
semigroup, we shall derive the RCW geometries and their Laplacians from 
the mandatory requirement that the theory be formulated in intrinsic covari- 
ant form. 

This has profound implications for our understanding of the quantum 
fluctuations, and we shall repeatedly discuss this point. Indeed, it is strongly 
believed that a possible conception of quantum fluctuations is to view them 
as classical deterministic motion (the drift vector fields) which are further 
perturbed by quantum noise described as Brownian processes. One uses 
precisely the fact that the drift vector field of the quantum fluctuations appears 
to be described in this theory incorporated into a single geometrical Laplacian 
as the conjugate (with respect to the metric g) vector field to the trace-torsion 
one-form, unifying thus the diffusion tensor (describing the metric) with the 
"classical" trace-torsion one-form Q, to give the average velocity of the 
quantum diffusion. Consequently, the LiouviIle operator of classical mechan- 
ics cannot be obtained from the stochastic theory by setting to zero the 
fluctuation terms of the Fokker-Planck operator, which in a noncovariant 
setting is, of course, valid (Gardiner, 1993). Thus, the ergodicity of these 
quantum fluctuational processes cannot be approached from the properties 
of the spectra of the Liouville operator since it cannot be intrinsically derived 
from the Fokker-Planck operator. Yet, most remarkably, the ergodicity struc- 
tures of the classical theory, can be defined in the stochastic setting by noting 
a most remarkable property. The stochastic flows defined by integrating the 
quantum fluctuational motions are diffeomorphisms of spacetimel Conse- 
quently the usual ergodic approach through the stochastic extensions of the 
Perron-Frobenius semigroups and Lyapunov exponents can be developed 
naturally for the quantum fluctuations (Rapoport 1996c, d); this approach is 
more general than the one that stems from the Liouville or--more generally-- 
the Perron-Frobenius operator of a classical dynamical system (Prigogine, 
1995; Lasota and Mackey, 1985). It is to be remarked here that the ergodicity 
behavior of the quantum fluctuations in our geometrical setting will be related 
to topological properties of spacetime which are represented by a nonzero 
Aharonov-Bohm potential term in the trace-torsion (Rapoport, 1996d) 

With regard to the geometrical status of the present formulation of 
quantum fluctuations, it is conceptually different from Nelson's stochastic 
mechanics, where the role of geometrical structures is subsidiary (Nelson, 
1985; Namsrai, 1985; Guerra, 1981, de Witt-Morette and Elworthy, 1981). 
In Nelson's conception [and also in Bohm (1952) and Bohm and Vigier 
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(1953)], the drift is seen as a classical field independent of the fluctuations 
and no geometrical basis for the master equation (i.e., the Fokker-Planck 
equation) of the quantum diffusion is made explicit. Thus, in this geometrical 
sense, stochastic mechanics follows a trend common to the noncovariant 
formulations of diffusions and irreversible statistical mechanics. Let us quote 
from a standard treatise by Gardiner (1993, p. 235) "this independent descrip- 
tion of fluctuations and deterministic motion is an embarrassment, and fluctua- 
tion-dissipation arguments are necessary to obtain some information about 
the fluctuations. In this respect, the master equation is a more complete 
description." Thus, in this article we follow to its roots the conception that 
it is the master operator which carries the complete information on the 
fluctuations, in keeping with the basic condition that the theory should be 
formulated intrinsically. 2 Then it is no surprise, with regard to Gardiner's 
comments above, that the present theory applies not only to quantum fluctua- 
tions, but also to nonlinear nonequilibrium systems: It is sufficient to regard 
the configuration manifold M either as spacetime or as the differentiable 
manifold of the macroscopic variables of a generally nonlinear nonequilibrium 
thermodynamic system whose master operator is (one-half) the RCW Lapla- 
cian (Rapoport, 1996c, d). In this extended setting, the fluctuation-dissipation 
relations and a nonlinear Boltzmann theorem receive a very simple treatment 
in terms of the trace-torsion drift vector field (Rapoport, 1996d). Thus, the 
unified approach to the solution of the "embarrassment" pointed out by 
Gardiner appears to be universal. 

Thus, it is relevant to discuss a method (like the second approach 
previously alluded to) in terms of which the introduction of the RCW geometry 
and its Laplacian appear as the basic structures for the characterization of 
fluctuations with continuous sample paths; this is the Cartan stochastic copy- 
ing (or development) method. This method, which follows after Elworthy 
(1982), extends the one applied to classical trajectories (i.e., smooth curves) 
in previous articles (Rapoport, 1996a) 3 Namely, we copy on the configuration 
manifold, by "rolling without slipping" (i.e., keeping first-order contact) by 
parallel transport of a standard Wiener process (described by the Gaussian 
measure) on the homogeneous flat model space. R n, which models the vacuum. 
In this way, we can generate the most general nonlinear diffusion on the 
configuration manifold starting from the simplest of  all diffusion processes 
on the tangent space which is invariant by the orthogonal group. The whole 

2Nonadherence to this principle leads to extremely cumbersome asymptotic solutions of diffu- 
sion processes with small "noise" terms (Gardiner, 1993). 

3This method was developed to give a theory of a classical relativistic spinning test particle 
submitted to exterior Riemann-Cartan connections, which bypasses both Lagrangian and 
Hamiltonian structures (Rapoport and Stemberg, 1984a, b), and is founded on presymplec- 
tic geometry. 
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information for carrying this method rests on the RCW connection. In the 
case M is a four-dimensional spacetime manifold (to make contact with 
general relativity), in the infinitesimal model R 4 (R 1'3) of the tangent space 
TxM at each point x ~ M seen as the quotient of the affine-orthogonal 
(Poincar6) group and the orthogonal (Lorentz) group, we have a standard 
Wiener diffusion whose probability measure is a Gaussian, and by rolling 
without slipping on spacetime by parallel transport by a RCW connection, 
we generate a generally non-Gaussian process on spacetime. We further 
remark that the prescription we shall follow for the diffusion process on R n 
is Stratonovich's midpoint prescription, which gives a stochastic calculus with 
the same transformation rules as the classical Cartan calculus on manifolds. 

This article is organized as follows. In Section 1 we present the RCW 
geometries and the Fokker-Planck master operator from the point of view 
of giving a covariant representation of the master operator. In Section 2 we 
give a complete characterization of the Fokker-Planck operator and discuss 
the relation between the electromagnetic potentials appearing in the trace- 
torsion decomposition and the microscopic irreversibility of the quantum 
diffusions. In Section 3 we present the description of the quantum motions 
generated by the RCW Laplacian in terms of stochastic differential equations. 
In Section 4 we present the Caftan stochastic copying (or developing) method, 
as a final approach to the introduction of the RCW geometry. Finally, for 
the reader who is unacquainted with the theory of diffusions on manifolds 
and the stochastic calculi, we give an Appendix, in which we first give the 
basic notions, proceeding in the subsequent second section to the theory of 
stochastic differentials, and finally to the theory of diffusion processes on 
differentiable manifolds. This last section of the Appendix contains a theorem 
which is fundamental for the discussion of the Cartan stochastic develop- 
ment method. 

1. THE INVARIANT F O K K E R - P L A N C K  OPERATOR A N D  
RIEMANN-CARTAN-WEYL GEOMETRIES 

We shall always consider smooth n-dimensional, compact oriented mani- 
folds M. We shall additionally assume given a second*order smooth differen- 
tial operator L. On a local coordinate system (x~), cx = 1 . . . . .  n, we write 
L as 

1 
L = ~ g~(x)c~,~O~ + B'~(x)O,~ (1.1) 

where B ~, g'~(x)  = g~'~(x), oL, ~ = 1 . . . . .  n, are smooth functions on M. 
From now on, we shall fix this coordinate system, and all local expres- 

sions shall be written in it. We shall be particularly interested in this section 
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in the (backward) Fokker-Planck operator, given by the formal adjoint of L 
with respect to the standard Hilbert space product of L2(Rn). We remark that 
in expression (1.1) we could have added a potential function. For probability- 
preserving semigroups, however, as we shall consider in the following, this 
function is automatically zero. 

Although formally there is no restriction as to the nature of M, due to 
the group-theoretic foundations of Cartan's method we are working on a 
four-dimensional spacetime manifold (for formulating the relativistic theory), 
or a three-dimensional space manifold (for the nonrelativistic theory), and 
not in a phase-space manifold. Our presentation expands on Rapoport (1995c). 

The principal symbol ~ of L is the section of  the bundle of real bilinear 
symmetric maps on T 'M,  defined as follows: for x ~ M, Pi E T ' M ,  take C 2 
functions, fi: M ~ R with f i (x)  = 0 and dr.(x) = Pi, i = 1, 2; then, 

tr(x)(pl, P2) = L(fnf2)(x) 

Note that (r is well defined, i.e., it is independent of  the choice of the functions 
fi, i = 1, 2. 

If L is locally as in (1.1), then (r is locally represented by the matrix 
(g~).  We can also view (r as a section of  the bundle of linear maps L(T*M, 
TM), or as a section of the bundle TM | TM, or as a bundle morphism from 
T*M to TM. If (r is a bundle isomorphism, it induces a metric g on M, g: 
M ~ L(TM, TM): 

g(x)(vb I,'2) : =  (o'(x)-ll , ' l ,  1,~2)x 

for x E M, vl, v2 ~ T*M. Here, (.,-)x denotes the natural duality between 
T * M  and TxM. Locally, g(x) is represented by the matrix ~(g'~f~(x))- i. Consider 
the quadratic forms over M associated to L, defined as 

1 
Qx(px) = ~ (p,r (L,(px))~ 

for x ~ M, Px ~ T*M. Then, with the local representation (1.1) for L, Qx is 
represented as �89 Then, L is an elliptic (semielliptic) operator whenever 
for all x e M, Q~ is positive definite (nonnegative definite). We shall assume 
in the following that L is an elliptic operator. In this case, (r is a bundle 
isomorphism and the metric g is actually a Riemannian metric. Notice as 
well that cr(df) -- grad f for any f :  M ~ R of  class C 2, where grad denotes 
the Riemannian gradient. 

In this section, we shall give an intrinsic description of L, i.e., a descrip- 
tion independent of the local coordinate system. This is the essential prerequi- 
site of covariance. 

For this, we shall introduce an arbitrary connection on M, whose covari- 
ant derivative we shall denote as V. We remark here that V need not be the 
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Levi-Civita connection associated to g; we shall make this precise below. 
Let tr(V) denote the second-order part of L, and let us denote by X0(V) the 
vector field on M given by the first-order part of L. Then, for f :  M ~ R of 
class C 2, we have 

1 trace(VZf) (x  ) = 1 e(V)(x) = ~ ~ (Vdr (1.2) 

where the trace is taken in terms of g, and V df  is thought of as a section of 
L(T*M, T'M). Also, X0(V) = L - tI(V). If F~v is the local representation 
for the Christoffel symbols of the connection, then the local representation 
of tr(V) is 

and 

1 
o-(V)(x) = ~ g'~a(x)(O~o~ + r~(x)Ov) (1.3) 

l 
X0(V)(x) = B'~(x)O~, - ~ g~f~(x)F~f~O v (1.4) 

If V is the Levi-Civita connection associated to g, which we shall denote as 
Vg, then for any f :  M ~ R of class C2: 

tr(Vg)(djO = �89 tr((Vg)2f) = �89 tr(VgdjO = 1/2 divg grad f = 1/2Agf 
(1.5) 

Here, Vg is the Levi-Civita Laplacian operator on functions; locally, it is 
written as 

Ag = g-ll2oa((gl/2gaf3Of~); g = det(g~) (1.6) 

and divg is the Riemannian divergence operator on vector fields X = X~(x)O,~: 

divg(X) = g-  l120a(gl12Xa ) (1.7) 

We now take V to be a Riemann--Cartan connection with torsion, which 
we additionally assume to be compatible with g, i.e., Vg = 0. Then tr(V) = 
�89 Let us compute this. Denote the Christoffel coefficients of V as 
F~v; then, 

F ~ =  13"/ + l/2K~v (1.8) 

where the first term in (1.8) stands for the Christoffel Levi-Civita coefficients 
of the metric g, and 

K ~  = T ~  + S~  + S~  (1.9) 
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is the cotorsion tensor, with S~v = g~'"gf~,,T,~,, and T~  = F~v - F~I ~ the skew- 
symmetric torsion tensor. 

Let us consider (one-half) the Laplacian operator associated to this 
Cartan connection, defined----extending the usual definition--by 

H(V) = 1/2g~V~V~ (1.10) 

Then, or(V) = H(F). A straightforward computation shows that that H(V) 
only depends on the trace of the torsion tensor and g: 

H(V) = l/2Ag + g'~f~Qf~O,~ (1.11) 

with 

Q = T~f~ dx f~ 

which is the trace-torsion one-form. 
Therefore, for the Riemann-Cartan connection V defined in (1.8), we 

have that 

or(V)= tr(V z) = ~ A g  + 0  (1.10') 

with Q the vector field conjugate to the 1-form Q: Q(f) = (Q, dj0, f :  M 
R. In local coordinates, 

O~ = g.~Q~ 

We further have 

Xo(V) = 8 - ~ g ~  0 ,  - 0 

Therefore, the invariant decomposition of L is 

1 tr(V2) + Xo(V) = 1 

with 

(1 .12)  

(1.13) 

b = B - ~ g~a O v (1.14) 

Notice that (1.12) can be thought of as arising from the 'gauge' transformation 
/~ ~ /5  - Q, with/~ the l-form conjugate to b. 

If we take for a start V with Christoffel symbols of the form 

r ~ =  13~/ + n - 1  {~'~Q'v-gf~'~Q'~} (1.15) 
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with 

we have 

Q =/~, i.e., (~ = b (1.16) 

and 

1 
r = ~ u(V 2) 

Therefore, 

Xo(V) = 0 (1.17) 

(1.18) 
1 1 

=H(V)=~ t r ( (Vg)  2)+ 0 = ~ A g + b  

1 
L = ~ r ( V ) = H ( V )  = tr((Vg) 2) + 0 (1.19) 

The choice of the RCW connection V is now clear: its Laplacian contains 
both the second-order and first-order terms in a single covariant operator. 
Furthermore, if we rescale V and consider instead hV, then we observe that 
both terms in (1.19) are quadratic in h. 

The restriction we have placed on V to be as in (1.15), i.e., only the 
trace component of the irreducible decomposition of the torsion tensor is 
taken, is due to the fact that all other components of this tensor do not appear 
at all in the Laplacian of (the otherwise too general) V. In the particular case 
of dimension 2, this is automatically satisfied. In the case we actually have 
assumed, that g is Riemannian, the expression (1.19) is the most general 
invariant Laplacian acting on functions defined on a smooth manifold. This 
restriction will allow us to establish a one-to-one correspondence between 
Riemann-Cartan connections of the form (1.15) and Markovian diffusion 
processes. We called these metric-compatible connections RCW (Riemann- 
Cartan-Weyl) geometries since the trace-torsion is a Weyl l-form (Rapoport, 
1991, 1996a). Thus, these geometries do not have the historicity problem 
which led to Einstein's rejection of the first gauge theory, that proposed 
by Weyl. 

2. THE WEYL TRACE-TORSION ONE-FORM 

2.1. The De Rham-Kodaira-Hodge Decomposition of the Weyl Form 
and the Maxwell-de Rham Equations of Electromagnetism 

To obtain the most general form of the RCW Laplacian, we need to 
determine the most general form of a 1-form on a manifold provided with 
a metric, to further apply it to the trace-torsion 1-form. The answer to this 
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problem, for an oriented compact manifold is given by the well-known de 
Rham-Kodaira-Hodge theorem (de Rham, 1984), which we recall now. 

We consider the Hilbert space of square-summable to of smooth differen- 
tial forms of  degree q on M with respect to volg. We shall denote this space 
as L 2,q, or as L2~~q(M, volg). The inner product is 

(to, ~b) = fM (to(x), qb(x)) volg (2.1) 

where the integrand is given by the natural pairing between the components 
of to and the conjugate tensor: g'~ffq . . .  gaq~q&a . . . . .  , alternatively, we can 

~ t  ~ q  

write in a coordinate-independent way: (to(x), ~b(x)) volg = to(x) ^ * ~b(x), 
with * the Hodge star operator, for any to, ~b ~ L 2,q. 

The de Rham-Kodaira operator on L 2"q is defined as 

A = (d - ~)2 = - ( d ~  + 8d) (2.2) 

where B is the formal adjoint defined on L 2,q+~ of the exterior differential 
operator d defined on L2'q: 

to) = (,I,, d o )  

for ~b e L 2,q+l and to e L 2,q. Then, 

~2 = 0 

In the case of q = 0, the de Rham-Kodaira operator coincides with the 
Laplace-Beltrami operator on functions encountered before; in the general 
case we have in addition to tr(Vg) 2 the contribution of the Weitzenbock 
curvature term, which we shall describe below. 

The de Rham-Kodaira-Hodge theorem states that L 2'~ admits the follow- 
ing invariant decomposition. Let to ~ LzA; then, 

to -- d f  + Aco~a + Ah~rm (2.3) 

where f :  M ~ R is a smooth function on M, Aco~ is a coclosed smooth 1-form, 

8A~od = -divg.4~ocl = 0 

and Aharm is a coclosed and closed smooth 1-form: 

8Ah~m = 0 dAh~m = 0 (2.4) 

Otherwise stated, Ahann is a harmonic one-form, i.e., 

AAha.~ = 0 (2.5) 

Furthermore, this decomposition is orthogonal in L 2'~, i.e., 

(df, Acocl) = (df, Ahem) = (Acod, Aharm) = 0 (2.6) 
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Now we return to the problem of characterizing the most general form 
of the trace torsion one-form Q. By the de Rham-Kodaira-Hodge theorem, 
there exists a smooth function f defined on M, and one-forms Acocl, Ah~,m on 
M which are coclosed and harmonic, respectively, and such that df, Acocl, and 
Ah~-m are orthogonal in L 2,1, then the trace-torsion of the connection V is 

Q = d f  + Acod + Ahem (2.7) 

We are interested in Markovian semigroups 4 { P ,  "r --> 0} with infinitesi- 
mal generator given by H(V): 

P.,h - h 
H(V)h = str limr 

T 

for h in the domain of H(V); here, the limit is taken in the strong (operator) 
sense. Note that trivially {P,, "r --> 0} preserves probability, i.e., P,(1) = 1 
for any "r >- 0, i.e., the zeroth order ("potential") term which could have been 
included in (1.1) is automatically zero. Thus, we shall be interested in a 
probability-preserving semigroup whose covariant infinitesimal generator is 
H(V) described in (1.19), (2.7), i.e., one-half the RCW Laplacian operator. 

We must remark that "r is not to be confused with the relativistic time 
coordinate of M; it is to be thought of as an internal time evolution parameter 
of the diffusion, which we shall describe below, consistently with our introduc- 
tion of the master equation; this distinction between "r and the relativistic 
time coordinate was originally conceived in quantum gravity by B. de Witt. 
This time parameter is Liouville's time in Prigogine's theory of nonequilib- 
rium statistical mechanics (Prigogine, 1962, 1995). 

Therefore, the most general invariant Laplacian H(V) on a compact 
smooth manifold depends on g, f ,  Aco~l, and Ah~;  thus we write 

H(V) = H(g,  f ,  Acocl , Aharm ) 

Then acting on functions ~b defined on M, we have 

n ( g ,  f ,  Ar Aharm)d~ = l/2Agd# + g(df,  dd?) 

+ g(A~o~l, d~)) + g(Anarm, d~b) (2.8) 

or in local coordinates, 

H(g,  f ,  A~o~l, Aha~m)~b = ll2g'~f~(O~f + Af~)O,~d? 

4See Gardiner (1993) and Yosida (1980). A Markovian semigroup in a Hilbert space H is a 
family of bounded, positive, linear operators {P, �9 -> 0} with dense domain contained in H, 
such that Po = ld satisfying the properties (i) (semigroup property) P,: o P.e = P~+.~', 'r, 'r' >-- 
0, (ii) (contraction property) IIP~II --< l, �9 >- 0, and (iii) "r ---, P~, is strongly continuous. 
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with 

A = (Aco~, + Aharm) 

This is the (forward) Fokker-Planck operator of our theory. 
The role of the trace-torsion vector field 

b = 0 = grad f + ,~co~1Aha~n (2.9) 

which is the vector field conjugate to the trace-torsion 1-form, is that of the 
drift (average velocity) of the continuous sample curves of the diffusion 
processes associated with H(g, f ,  A~ocl, Aharm). Thus, the introduction of the 
torsion is an essential feature of the diffusion processes associated with {P~, 
"r --> 0}, since Brownian processes have continuous nondifferentiable sample 
paths (actually, they are fractals). 

We are interested now in the transpose of H(g, f ,  Aco~l, Aharm) in L 2'~ 
i.e., the operator acting on smooth functions ~b on M: 

1 
H(g, f ,  Aco~,, Ah~m)t~b = ~ Ag~b - divg(~b �9 grad f )  - divg(~b �9 ,4) (2.10) 

where we have kept the above notation, so that fi~ is the vector field conjugate 
to A. The operator described by (2.10) is the (backward) Fokker-Planck 
operator (Gardiner, 1993). 

The transition density pV(x, y) is determined as the fundamental solution 
of the "heat" (here, for well-posedness, g cannot be Lorentzian) equation on 
the first variable x: 

OpV(x, y) 

O'r 
- -  - H(g, f ,  Acocl, Aharm)(X)pV(x, y) (2.11) 

It will be very important for the following to note that the semigroup 
{Pr "r --> 0} has a unique "r-independent invariant probability density p > 0 
determined as the weak fundamental solution (in the sense of the theory of 
generalized functions) of the stationary ('r-independent) Fokker-Planck 
equation: 

H(g, f ,  Acocl, Aharm)t(p) = 0 (2.12) 

Let us determine Q from (2.12). We choose a smooth function U defined 
on M such that 

H(g, f ,  Acocb Aharm)t(e -tj) = 0 
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i.e., p = e -U volg is an invariant measure. Since 

H(g, f ,  Acocl, Aha, m)*(e -v) = -- l128d(e -U) + 8(e-UQ) 

- 1  
- 8d(e -U) + 8(e-U(df + A~ocl + Aharm)) = 0 

2 

i.e., 

. -1/28(d(e -v) + e-V[df + Aco~l + Aha~m]) = 0 

we finally have 

1 
e-V(df + Acocl + Ahem) - ~ d(e -v)  = 8132 + col (2.13) 

for some two-form [32, and COl a harmonic one-form, i.e., 

1 
e-U(df + Aco~l + Aharm) = ~ d(e -u) + 8[32 + col (2.14) 

Therefore,  if we write 

p = t~ 2 volg i.e., U = - l n  I[I 2 (2.15) 

then the exact term of  Q is 

df  = d In O (2.15) 

and also we have the coclosed 1-form 

8132 
A~o~l = t~ 2 (2.16) 

where ~2 is a smooth two-form on M, and 

COharm 
Ah~, -- 42 (2.17) 

is a harmonic one-form on M such that COh~r,, is also a harmonic one-form 
on M; therefore Ah~n~ and COhere satisfy (2.4), or what is the same, satisfy 
(2.5). We remark that d In 4, Aharm, and A~o~l are chosen orthogonal in L 2'1. 
Therefore  we shall write the forward Fokker-Planck  operator as H(g, 4, 
Atoll, Aharm) 

Conversely, if Q is described by the sum of  (2.15)-(2.17),  then 

H(g, t~, Aco~l, Aharm)t(e -U) = 8(e-V(d In ~ + A~od + Aharm) -- 1 d(e_U) ) 

-~- 8(8~2 "~ COharm) = 0 
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and hence O2volg is an invariant measure; here we have used the fact that 
82 = 0 and OJharm is coclosed. 

Therefore, from the stationary Fokker-Planck equation we have deter- 
mined the de Rham-Kodaira-Hodge decomposition of the trace torsion one- 
form Q; it is given by the sum of exact, coclosed, and harmonic 1-forms: 

Q = d In t~ + 1/~2(~132 + tOharm ) (2.18) 

with 132 a smooth two-form, and tOnarm a harmonic one-form, both defined 
on M. This is the orthogonal decomposition of the trace-torsion one-form Q. 

The exact term of Q is the one that appears upon introducing the Einstein 
A transformations produced by the t~-field (Rapoport, 1991, 1996a), which we 
proved (Rapoport et aL, 1994) coincides to the amplitude of a Dirac-Hestenes 
spinor operator field. Therefore, we conclude that associated to the A transfor- 
mations by ~b, there exists an invariant stationary probability density t~2volg. 
From the point of view of statistical mechanics this density plays the role of 
a Gibbs measure (Graham and Haken, 1971; Rapoport, 1996c, d; Nagasawa, 
1993), while in (nonrelativistic) quantum mechanics it is the Born density. 
Furthermore, through the determination of the form of the electromagnetic 
potentials appearing in the decomposition of the trace-torsion one-form, we 
have found that they appear normalized by t~2; similarly to the modification 
of the electromagnetic potential found by Hojman et al. (1979) in studying 
the problem of coupling of electromagnetism to the exact component of Q. 

It is important to remark that p describes the f inal  state of the system. 
Indeed, one can prove that the transition density pV(x, y) tends to p(y) for 
-r ~ o% y ~ M, and x in a compact set. 

It is quite remarkable that the condition of existence of a stationary 
solution of the Fokker-Planck equation (2.9) leads to a decomposition of the 
trace-torsion in which there appear two potentials, one of which is harmonic, 
which are further normalized by l/tl/2. We further note that if we take ~ such 
that it has a nonnull node set N(t~) = {x e M: t~(x) = 0}, then these two 
potentials, 8132/02 and ~oh~./~ 2, become singular at N(O). 

The electromagnetic field of the coclosed potential is 

F = d = ~-~ d~13 2 + /k ~13z 

= 1/~2(d~132 - 2d In ~ / k  ~[32) (2.19) 

Then, F satisfies the Maxwell equations 

d F  = 0 (2.20) 

and 

~F = j (2.21) 



Riemann-Cartan-Weyi Quantum Geometry. II 2129 

where j is the electric current 1-form. In taking into account that ~A~o~ = 
0, we can rewrite (2.21) as 

or as 

with 

~F = ~dAco,:l = -AAcocl = j (2.22) 

AAco~l = trace((Vg)2)Acocl - R~(g)A~oclfflx ~ = - j  (2.23) 

R~(g) = R r  

which is the Ricci curvature tensor associated to g. This is the source-full 
Maxwell-de Rham equation. As observed by Misner et al. (1973, p. 569), 
these equations are more general (and also intrinsic) than the ones obtained 
from the application of the principle of equivalence, by replacing usual 
derivatives by Levi-Civita connection derivatives, and reduces to them when 
spacetime is flat. Indeed, in (2.23) there is a coupling to curvature, which is 
called the Weitzenbock term. 

Let us examine now the harmonic term Aharm = (Oharm/l]/2 of Q. Trivially, 
it generates a trivial electromagnetic field, so that we shall call it the Aharo- 
nov-Bohm potential term of Q. The fact that it is coclosed can be expressed 
in the form of the conservation equation (Lorentz gauge condition) 

divg,~harm ---- --~Aharm : 0 (2.24) 

Yet the fact that Aham~ is harmonic can be written in the form of the sourceless 
Maxwell-de Rham equation, 

AAha~m = 0 (2.25) 

Furthermore, if we let i]1 have a nonnull node set on M, on this set 
Aharm becomes singular, and then it is natural to generalize (2.25) to an 
inhomogeneous equation of the form 

L~Aharm = Jmag (2.25') 

where jmag denotes a magnetic monopole current one-form. 

2.2. Irreversibility and the Nonexact Weyl One-Form 

Finally, we shall introduce the probability vector associated to the RCW 
diffusion. Consider the vector field 

1 
Jr := p~b - ~ grad p V (2.26) 
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Then the Fokker-Planck equation can be rewritten as 

- -  + divgJ~ = 0 (2.27) 
a'r 

which in the stationary state yields the probability vector field 

1 
Jstat = ~2b - ~ grad t~ 2 (2.28) 

where, as above, b is the conjugate vector field to Q given by (2.18), i.e., 

b = grad In ~ + .3,/02 (2.29) 

or, in local coordinates, 

b '~ = g~'f~(O~, In ~ + AfJdg 2) (2.29') 

with A given by the coclosed 1-form 

A = ~13z + O.)harm 

Therefore, Jstat reduces to 

Jstat = /~  (2.30) 

Then, J~tat is a conserved probability vector field, since 

divgJstat  = - ~ J s t a t  = - ~ ' 4  - -  0 (2.31) 

Note that only in the case in which we set A ----- 0, or equivalently, by 
orthogonality, that 8132 and (.Oharm both vanish, do we have a null probability 
vector. This will be of importance in relation to the microscopic reversibility 
of the quantum fluctuations, which we shall introduce in terms of detailed 
balance. A nonnull probability vector field turns out to be equivalent to 
irreversibility of the quantum fluctuations. 

Indeed, the irreversibility of diffusions [i.e., that the integral quantum 
flow {X~: "r ----- 0} generated by H(V) is probabilistically distinguishable from 
the time-reversed process {X-v: -r -> 0}] is usually presented in terms of the 
notion of detailed balance in nonequilibrium thermodynamics (Graham and 
Haken, 1971; Van Kampen, 1957; Gardiner, 1993; Rapoport, 1996c). There 
is a simple characterization of irreversibility in terms of the infinitesimal 
generator of a diffusion process and its stationary density: The diffusion 
process is reversible iff the drift vector field reduces to the exact component; 
the noncovadant formulation of this is due to Graham and Haken (1971). 
This characterization of the irreversibility of a diffusion process can be given 
covariantly in terms of the lack of symmetricity of its infinitesimal generator. 
A diffusion process with infinitesimal generator L and stationary density Ix 
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is symmetric (i.e., reversible) iff the operator L is symmetric on the Hilbert 
space L2(ix) (Kolmogorov, 1937; Nagasawa, 1993). Thus, reversibility is 
satisfied whenever, for any two smooth functions f and g defined on M, we 
have that 

I (Lf)(x)g(x) Ix(dx) = f f(x)(Lg)(x) ix(dr) 

It is straightforward to check that for RCW diffusion with generator 
H(V) = n(g, ~, Acocl, Aharm) and stationary measure 02volg, the process is 
reversible if and only if ~[32 and tOha~m vanish completely, i.e., the probability 
vector field in the stationary state Jstat vanishes identically. Therefore, the 
nonexact terms of Q, which thus cannot be gauged away, appear associated 
to the breaking of irreversibility of the spin-0 diffusions generated by the 
RCW connection. 

3. RIEMANN-CARTAN-WEYL GEOMETRIES AND 
STOCHASTIC MOTIONS 

We have already described the geometrical structures which lead to 
the Fokker-Planck irreversible equations of diffusion determined by these 
geometries. Now, as is well known in a noncovariant setting, the Fokker- 
Planck equations are equivalent to stochastic differential equations (Gardiner, 
1993), whose covariant description we give now. The description of the 
geometrically determined fluctuations of spacetime described by these sto- 
chastic equations can be given in essentially two ways; the first, which we 
describe below, demands the introduction of an arbitrary "square root" of 
the metric. This construction is nonunique, geometrically speaking, yet proba- 
bilistically it is essentially unique (see Appendix). In Section 4 we shall give 
a construction which retains essentially the meaning of torsion, as described 
by Cartan's development method, and does not demand the "square root" of 
the metric. 

By embedding M on R d, with d - 2n + 1, we can obtain a section Y 
(at least locally Lipschitz, or satisfying the Sobolev regularity conditions) of 
L(R d, TM), so that if Y* denotes the dual section of L(TM, Rd), then, for all 
x ~ M ,  

g(x) = Y(x)r*(x) (3.1) 

Given an orthonormal basis {ei, i = 1 . . . . .  n} of R d, we may define vec- 
tor fields 

Yi(x) = Y(x)(ei) (3.2) 
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Taking Y to be smooth, we can define the second-order differential operator 

L~. = (y/)2 (3.3) 

For L as in (1.1) and Y locally of the form 

Yi(x) = ~(x)O~ (3.4) 

we have, locally, 

L~(x) = g'#~O,~Ot3 + Y~(x)Ot~Y~(x)O ~ (3.5) 

If we take the vector field on M given by 

1 y~of~yv(x)O" (3.6) X ~ ( x )  = 8 ( x )  - -~ 

then 

1 
L = ~ L 2 + X0 v (3.7) 

This decomposition depends essentially on the choice of  the "square root" 
Yof  or. 

For an arbitrary Riemann--Cartan connection V as in (1.15), we consider 
its term given by the Levi-Civita connection Vg; with the choice of Y suffi- 
ciently regular, we have the following decomposition of L = H(V) as in (3.7): 

x~ = Xo(V) - s ( w ,  r )  (3.8) 

and 

with 

1 L2 r = tr(V) + S(V g, Y) 
2 

(3.9) 

1 
S(Vg, Y) = ~ tr(VgY(Y(.)(.)) (3.10) 

where VgY is the covariant derivative of  Y viewed as a section of  L(TM, 
L(R d, TM)). The vector field S(V g, Y) is the Stratonovich correction term. It 
is essential for the transformation of the representation of the process 
according to the Stratonovich midpoint rule, which gives the Stratonovich 
stochastic differential calculus with transformation rules similar to the ordi- 
nary differential calculus, to the It6 representation (prepoint rule). 

If we take for V the RCW connection (1.15), since tr(V) = 1/2 tr(V 2) = 
H(g, d~, Acocl, Aharm), then we obtain from (1.17) and (3.8) 

X0 v = - S ( V  g, Y) (3.11) 
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and 

1L2 = 1 ~ Ag + b + S(V ~, Y), with b = Q (3.12) 

Given a Fokker-Planck operator, one can characterize the associated 
Markovian semigroup through the heat kernel or through a stochastic differen- 
tial equation; for the noncovariant formulation see Gardiner, (1993). In partic- 
ular, for the Markovian semigroups determined by H(g, t~, Ab A2), the 
associated stochastic differential equation for the random continuous curves 
{X~: r --> O} is 

dX, = Y(XO o dW, + [b(X0 + S(V g, Y)](XT)dr (3.13) 

in the Stratonovich representation, or equivalently, in the form of the It6 
representation, 

dX~ = Y(XO dW, + b(XO dr (3.14) 

with b given by (2.29) and { W~, r - 0} is a mean-0 Brownian process on 
Rd: E(W,) = 0 and E(wrw~)  = ~rsr, the Kr6necker tensor. 

4. T H E  CARTAN S T O C H A S T I C  COPYING M E T H O D  

We shall take M to be a smooth n-dimensional manifold (which can be 
in particular a four-dimensional spacetime) provided with a Riemann-Cartan 
structure V which is compatible with the Riemannian metric g. On M we 
construct the bundle ~: PH "-" M of orthogonal frames. Thus, consistent with 
Section 1 of Rapoport (19963) (which we shall denote from now on as I), g 
is a Riemannian metric and H is the orthogonal group 0(n) as isometry group 
of the tangent space at each point of M, R" provided with the flat metric 
diag(1 . . . . .  1). It is important to remark that g can be in fact a Lorentzian 
metric on M, so that in this case H = SO+(I, n - l) and instead of  R" we 
take R ~'n-l, the Minkowski space provided with the metric d iag(+ l ,  - 1 ,  
. . . .  - 1 ) .  We shall take the canonical realization of the standard Wiener 
process W(r, to) = co(x) on R"(RI"-I); we have E(W a) = 0 and 

a b E(W~WO = ~ r  for all a, b ~ { 1 . . . . .  n}. 
The Cartan stochastic copying method is embodied in the following 

stochastic differential equation, which replaces equations (7.5), (7.6) of I. 
We look for the solution r(x) = (r(x, r, w)), where (r(x)) ~ PH, of  the 

Stratonovich stochastic differential equation 

dr(x)  = s  o dw~(r) (4.1) 

with initial condition 

r(O) = r (4.2) 
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Here, / 'a ,  a = 1 . . . . .  n, are the canonical horizontal vector fields associated 
with the metric compatible connection V, given by 

0 
L a = e~a~ - F~e~eT, 0e-~ (4.3) 

In local coordinates of  Pm equations (4.1), (4.2) read 

dX~("r) = e~("r) o dwa(.r) (4.4) 

de~("r) = -F~(X( 'r))e~a(t)  o dX~(.r) (4.5) 

where r('r) = (X~('r), ea~('r)). Note that if r(0) e PH, then the whole solution 
r('r) remains in Pm since, as can be verified straightforwardly, it is valid that 

d(g~f~(X('r)e~(r)e~(r)) = 0 (4.6) 

so that V is compatible with g along X('r), (This is quite remarkable, since 
X, is only continuous.) 

Now a stochastic curve on M is defined just as in the classical case by 
projection on M: X('r) = -rr(r('r)). By writing X('r) = (X('r, r, w)), we have, 
just as in the classical case presented in I, that 

X(T, Ar, w) = X('r, r, Aw) ,  V,r >_ O, A ~ H, w (4.7) 

But A w  = (Aw(T))  is another Wiener process; this is an essential property of  
the Wiener process, its invariance by the (pseudo) orthogonal group. 5 Hence, 
the probability law of X(., Ar, w)  is independent ofA ~ H. Then the probability 
law of X(., r, w) depends only on x = w(r); we denote it by Px- Thus we 
have a diffusion process on M; in fact it can be proved that it is strong 
Markov diffusion (for these notions, see Appendix). Now, let us compute 
the infinitesimal generator A of this Brownian process. For any function h 
on Ptt, h(r)  --  h(x),  for r = (x, e) of  class C 3 (so that h is a "basic" function), 
we have by integrating (4.1) with (4.2) 

h(Xr) - h(x) = [,a(r(~))  ~ dwa(tr)  (4.8) 

Now we apply Theorem A. 1 (see Appendix). In the present case A0 - 
0 and the A~ are given by (4.3). Then, from Theorem A. 1 we conclude that 
the infinitesimal generator A of the diffusion X('r) = -rr(r(r)) on M is 

A f  = 1 /2LaLof  (4.9) 

5Remarkably, the Wiener process is invariant by the action of the whole 15-dimensional 
conformal group, yet, under the action of the inversion transformations J(x) = x / I x l  2, it is 
actually an h-transform of the Wiener process, where h = Ixl 2-n, as a function on R n. 



Riemann-Cartan-Weyl Quantum Geometry. II 2135 

for any smooth function f on M. Now, a straightforward computation yields 

Af = I /2g~V~VJ = H(V) (4.10) 

It is essential to remark that this operator is one-half the Laplacian 
operator (1.10) associated with the metric-compatible connection V. 

Thus, we have completed the presentation of the extension of Cartan's 
method to Wiener processes. It is remarkable here, in contrast with the 
presentation of Section 3, that there is no need of a square root of the 
metric. The metric compability appears as the condition of classical reduction 
(Rapoport and Sternberg, 1984a, b; Rapoport 1996a) of the linear bundle of 
frames to the orthogonal (or Lorentz) bundle of frames Pn, which itself allows 
the definition of the stochastic process on M as the projection of the stochastic 
process on Pn. We remark that to ensure a one-to-one correspondence between 
Riemann-Cartan connections and stochastic processes with infinitesimal gen- 
erator given by H(V), we need to restrict V to be a Riemann-Cartan-Weyl 
connection, which by the same arguments as presented in Section 1, takes 
the form given in (1.15), with trace-torsion Weyl one-form given in (2.18). 

5. CONCLUSIONS 

We have introduced the RCW geometries and their Laplacian operator 
on functions from two different points of view. For the first one, starting 
from a noncovariant Fokker-Planck operator, we have seen that the covariant 
decomposition of this operator leads naturally to the RCW geometries. 

Second, starting from the simplest of all diffusion processes, the canoni- 
cal Wiener process with null drift, we have obtained by Cartan's method the 
most general probability-conserving Markovian semigroup in spacetime. All 
of the information for carrying out this stochastic Cartan method is incorpo- 
rated in the Riemann-Cartan-Weyl connection. While infinitesimally, on the 
tangent space we have the trivial Wiener measure corresponding to a reversible 
process, on spacetime we have a generally irreversible process which is no 
longer described by a Gaussian measure. The processes constructed by the 
Cartan stochastic copying method are indistinguishable from those con- 
structed in Section 3 by taking a square root of the metric to describe the 
fluctuations. Remarkably, these constructions can be extended to infinite 
variables, in considering Gibbsian measures on lattices given by infinite 
denumerable products of M. This extension will be presented in a forthcom- 
ing article. 

In Section 2, starting from the stationary solution of the Fokker-Planck 
equation, we have actually determined the form of the trace-torsion and thus of 
the Fokker-Planck operator itself. In applying the de Rham-Kodaira-Hodge 
theorem, we have automatically obtained the field equations for the electro- 
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magnetic potentials which appear in the RCW geometry and its Laplacian. 
Clearly, we have given above the field equations for Acod and Aharm: the first 
is a coclosed one-form, so it is a Maxwell field, while the second is harmonic. 
Both potentials couple to the exact component of the trace due to the fact 
that they both appear normalized by t~ 2. Only the coclosed term produces a 
nonzero electromagnetic field and satisfies the source-full Maxwell-de Rham 
(MdR) equation, while the harmonic component, which has a zero field, 
satisfies the sourceless MdR equation if we assume ~ to be strictly positive; 
if we relax this condition so that t~ has a nonempty node set, then the harmonic 
component satisfies the MdR equation with a source associated with a mag- 
netic monopole current. Remarkably, these equations have incorporated the 
Weitzenbock term, which expresses the coupling of the electromagnetic poten- 
tial to the Ricci curvature, and plays a fundamental role in the recent theory 
of SU (2) monopoles and four-manifolds structures due to Witten and co- 
workers. In fact, in this theory, the existence of the solutions to Witten's 
monopole equations depends essentially on the sign of the metric scalar 
curvature (Witten, 1994). 

We would like to notice further that the normalized form of the electro- 
magnetic potentials we have found, although original in its decomposition 
in coclosed and harmonic components obtained through the existance of a 
stationary density of the diffusion, is identical to the one appeared in the 
literature in studying the problem of coupling of torsion to the electromagnetic 
field, from arguments which are framed in terms of the invalidity of the 
minimal coupling rule when this former coupling is assumed (Hojman et 
aL, 1979). 

Furthermore, this decomposition into coclosed and harmonic terms and 
its relation to the breaking of detailed balance in the spin plane of a Dirac- 
Hestenes spinor operator field (DHSOF) plays a crucial role in the equivalence 
between the free Maxwell equation on a Lorentzian manifold and the Dirac- 
Hestenes equation for a DHSOF on a RCW manifold (Rapoport, 1997); this 
equivalence extends the one obtained in the case that Q reduces to its exact 
term (Rodrigues and Vaz, 1993). This equivalence allows us to think of the 
electromagnetic potentials of Q as associated with electromagnetic potentials 
defined on the spin plane of a DHSOF, and thus the diffusion of spin-0 
ensembles whose differential generator H (g, ~, Acod, Aharm) is described by 
the RCW connection whose nonexact terms produce the irreversibility of 
these diffusions are connected with the rotational degrees of freedom of the 
DHSOE It is to be remarked that the one-form 8132 appears to be a generaliza- 
tion of the so-called Hertz potential, which in the particular case of Minkowski 
spacetime plays a central role in the construction of subluminal and superlumi- 
nal solutions of the free Maxwell equation (Rodrigues and Lu, 1996). 
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Due to the fact that the geometrical structure of spacetime is an open 
problem in physics, torsion has appeared in different theories. Torsion has a 
central bearing in the theory of classical defects in condensed matter physics 
(Kleinert, 1989, 1991). Poincar6 gauge theories of gravitation with torsion 
are a subject of contemporary interest, and its importance in elementary 
particle theory has been discussed (Hehl et al., 1995). The central role of 
torsion in black hole theory has been elaborated (de Sabatta and Sivaram, 
1991). It is sometimes alleged--as a matter of consensus--that since at a 
classical level the need of a gauge theory of gravitation is not manifested, 
there is no clear reason for the consideration of geometries with torsion 
as fundamental. 

It is one of the main thesis of this series of articles that this consensus 
might be a mistake. There is no possibility of describing quantum fluctuations 
and nonlinear nonequilibrium classical thermodynamics in a gauge-theoretic 
setting unless one introduces the trace-torsion. Furthermore, one can prove 
that this torsion, specifically its exact component, produces a (geometrical) 
source for the Einstein-Cartan energy-momentum tensor derived from the 
metric (Rapoport, 1995a). This will allow us to connect the heat kernel of 
de Witt's metric approach to quantum gravity with the heat kernel associated 
with the exact component of the RCW connection (Rapoport, 1995d). On 
the ground-state Hilbert space defined by t~2volg, the representation of the 
diffusion makes explicit the exact component of the trace-torsion; yet, when 
transforming the RCW Laplacian by conjugation by ~, the torsion is lost and 
appears encoded in the relativistic quantum potential, which turns out to be 
equal to ~-2R(g), where R(g) denotes the metric scalar curvature. Therefore 
the metric structure of gravitation is derived from the RCW structure, which, 
as we have shown in this article, is related to the most general kind of 
quantum diffusion on spacetime. Furthermore, the nonlocality of quantum 
mechanics appears to be encoded in the metric scalar curvature. Remarkably, 
this change of representation is also at the basis of the natural linearization 
of the Burgers equations of hydrodynamics for a compressible fluid with null 
pressure (Rapoport, 1995d). 

In closing this article, we would like to situate the present theory in 
relation to the perspective in physics due to Einstein, de Broglie, Bohm, Vigier, 
Nelson, and others of developing a causal theory of quantum mechanics while 
maintaining a stochastic theory (Holland, 1993; Selleri, 1981). Yet in this 
perspective, with the sole exceptions of de Broglie (1953, 1956) and Namsrai 
(1985), there is no hint as to the possibility that quantum fluctuations might 
be related to geometrical spacetime structures. In this respect, while continu- 
ing this perspective, the present approach is original; the RCW geometries 
are singled out, and, as discussed briefly above, these are transformed at an 
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operator level to Riemannian representations, shedding light on the special 
geometrical character of Einstein's general relativity. 

Rephrasing Einstein, if "God plays dice," then the distribution of the 
outcomes is determined by a RCW spacetime connection. Yet we must remark 
that the actual determination of this RCW connection requires initial and 
boundary conditions for solving the field equations which determine this 
connection. 

APPENDIX:  STOCHASTIC DIFFERENTIALS AND DIFFUSION 
PROCESSES ON SMOOTH MANIFOLDS. 

A1. Prel iminaries  

There are various authoritative treatments of the subjects we shall con- 
sider in this Appendix (Rogers and Williams, 1987; McKean, 1969; Ikeda 
and Watanabe, 1981; Elworthy, 1982). 

Let ( ~  F, P) be a probability space, i.e., ( ~  F) is a measurable space 
[i.e., f l  is a topological space (the "space of events"), F is a ~-algebra 
of sets of l-l] and P is a or-additive nonnegative measure on P such that 
P(f~) = I. 

Let (S, B(S)) be a topological space with the topological or-field B(S) 
(i.e., the smallest or-algebra of sets containing all open sets). Recall that a 
mapping X: f~ ~ S is called F/B(S)-measurable iff-J(B) = {x/fix) ~ B} E 
B(S) for all S ~ B(S). Then an S-valued random variable on (X, F, P) is a 
mapping X: f~ ~ S which is F/B(S)-measurable. In particular, if S = R or 
S = R", then X is called a real random variable or an n-dimensional random 
variable; the case which will interest us is S an n-dimensional smooth manifold 
M, or the set of continuous curves on M. IfX an S-valued random variable, then 

pX(B) = P[X-l(B)] = P[oJ: X(to) ~ B] = P[X E B], B E B(S) 

defines a probability on (S, B(S)); pX is called the probability law (or probabil- 
ity distribution of the random variable X); it is nothing else than the "induced 
measure" or "image measure" of the measurable mapping X. Let X, Y be real 
random variables on a probability space (D, F, P). Two random variables X 
and Y are identified if P[co: X(oJ) :~ Y(o~)] = 0; a random variable X is called 
integrable if 

n IX(co)l e(dco) < oo 

For an integrable random variable, the expectation or mean value of X 
is E(X) := fnX(co) P(do~). For a square-integrable random variable X [i.e., 
fnlX(oJ)F 2 P(dco) < ~], we define the variance of X: 

V(X) = E(X 2) - E(X) 2 [= E(X - E(X)) 21 
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Let W d = C([0, ~ )  ~ R d) be the set o f  all cont inuous functions w: 
[0, ~ )  ~ q" + w('r) e R d. One can introduce a natural metric  on W d so that 
it turns to be a complete  separable metric space under this metric.  Let  B(W d) 
be the topological  o--algebra. By  a Borel cylinder set we mean  a set B C W d 
of  the form 

B = {W e Wd: (w('q) . . . . .  W('Cd)) e E} 

for  some sequence 0 ----- "rl ---- . . .  ----- rd and E e B(R"d). The  mapping  w e 
W d ,-, (w(rp  . . . . .  W(rd)) e R "d is continuous. The  totality of  Borel  sets 
coincides with B(Wd). 

By a d-dimensional  continuous process X, we mean a Wd-random variable 
defined on a probabili ty space (f/, F, P), i.e., a mapping  X: f~ ~ W d which 
is FIB(Wd)-measurable. The value at "r e [0, ~ )  o f  X(w) is denoted by X,(w) 
or X(-r, w). For f ixed -r, the mapping  co ~ X,(w) is a d-dimensional  ran- 
d o m  variable. Conversely,  a collection {X, (w)},E[0,~) of  d-dimensional  ran- 
d o m  variables determines a d-dimensional  continuous process if  "r ~ X,(w) 
is continuous with probabili ty 1. 

Let  (11, F, P) be a probabil i ty space, and (F0,_>0 be an increasing family 
of  sub or-fields of  F, i.e., F ,  C Fs, if  0 <-- r --- s. (F0,_>0 is called right- 
continuous if F,+0 :=  N F,+~ = F, ,  V'r e [0, m). I f  this is the case, we say 

that {F,},~0 is a reference family. 
Let i" = T O {o~} be the one-point  compact i f icat ion of  T = [0, ~) ,  Let  

(D, F, P) be a probabili ty space provided with a reference family  (F,),E~,. A 
continuous process X = (X0,__,o is called adapted to (F,),_>o if X, is F , -  
measurable  for  every "r. Generally, a process X = (X0,_>0 is called measurable 
if  the map  [0, oo) • f~ ~ R", ('r, w) ~ X,(w), is B([0, ~) )  X F/B(Rd)- 
measurable.  A process X = (X0 is called predictable with respect  to (F0,_~o 
if  the mapping  (% w) ~ X,(w) is S/B(R")-measurable, where S is the smallest  
o--algebra o f  [0, ~ )  X l~ such that all left-continuous (F~)-adapted processes 
are measurable.  Clearly, predictable processes are measurable  and adapted 
to (F0,_>o. 

A real stochastic process X = (X~),~I' is called a mart ingale  with respect  
to (F,),~ i' if  for  every "r e ~P: 

(i) X~ is integrable 
(ii) X, is F , -measurable  
(iii) E(XIF0 = X, 

We now introduce the basic notion o f  a standard Brownian  motion or 
a Wiener process. Let p(-r, x), t > 0, x e R a be 

p(-r, x) = (2"r'rr) -d/2 exp [-Ix12/2-r] 
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and let B = (Br)t>_o be a d-dimensional continuous process such that for every 
O < 7 < . . . < rm and Ei ~ B(Rd), i = 1 . . . . .  m, we have 

P[BI ~ El, B~ 2 ~ E2 . . . . .  BT m ~ Em] 

= I  ~(dx) fE P('rl'Xl - - x )  dXlfE P ( ' r z - ' r l ' x 2 - X l )  dX2"'" 
Rd I 2 

• ( p('rm - "r,,-l, Xm -- Xm-O dxm 
d E m 

where Ix is a probability measure on (R d, B(Rd)). Then B = (B0 is a d- 
dimensional continuous process such that for every 0 = "to < "rl < . . .  < 
"r,,, B~o, B~ - B,o . . . . .  B~,. - B,x_ j are mutually independent variables, 

pn0 = Ix and Pn'i-n~i-t = P(ri - "ri-1, xi) dxi, i = 1 . . . . .  m 

Such that a process is called a standard d-dimensional Brownian motion (or 
Wiener process) with the initial distribution Ix. The probability law pc(Ix) on 
(W d, B(Wd)) is called the d-dimensional Wiener measure with the initial 
distribution Ix. Thus, the d-dimensional Wiener measure P with the initial 
law Ix is characterized by the property that 

P[w: w('q) ~ El . . . . .  w('rm) ~ Em] 

=IR  d Ix(dJ(')fE, P('rl'Xl--X) dXl' ' ' fEm P("~n--Tm-l'Xm--Xm-l) dJ~ 

For any probability law Ix on (R a, B(RU)), the d-dimensional Wiener measure 
pn(Ix) with initial distribution Ix exists uniquely. 

On the probability space (W d, B(Wd), P(Ix ) ), the coordinate process X(r, 
w) = w('O, w ~ W a, defines a d-dimensional Brownian process with initial 
law Ix. This process is called the canonical realization of a d-dimensional 
Brownian process. 

The basic fact of Brownian motion is that the function r ,-* B('r) is 
nowhere differentiable with probability 1, and thus the integral 
f~ f (s )  dB(s), for f a  real-valued function, is not defined in the usual sense. 
Thus arises the necessity of developing an extended integration theory for 
Brownian motions, or, more generally, for arbitrary martingales, which we 
briefly introduce next. 

A2. Stochastic Differentials and the It6 and Stratonovich 
Stochastic Integrals 

Let ( ~  F, P) be a probability space with right continuous increasing 
family (F0~_>0 of sub-~-algebras of F, each containing all P-null sets (i.e., 
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those sets with zero P-measure) .  Let  L2 be the space of  all real, measurable  
processes  �9 = (~( 'r ,  to))~_>0 on f~ adapted to (F0  such that for every T > 0 

We identify q~ and q~' i n / 4  if  I[q~ - ~'l12,r = 0 V r  > O, and then write 
~ = ~ ' .  

Let  L0 be the subcollection of  all real processes �9 = (q~('r, ~) )  �9 /4  
with the property that there exists a sequence of  real numbers  0 = % < "r~ 
< �9 �9 �9 < "rn < �9 �9 �9 --* ~ and a sequence of  random variables ~.(m) } such that 

f,. is F, i-measurable,  JJsup ~11 < ~, and 

~f0(to) if  "r = 0 
q~('r, CO) % 

[f,-(to) if T �9 (Ti, Ti+I) 

Clearly, such ~ is expressed as 
oc 

r to) = fo(o~)ll~=ol('r) + ~ii(to)l(Ti.xi + ,)('r) 
i=1 

where IA('r) is the characteristic function of  the set A, equal to 1 for  "r �9 A, 
and 0 otherwise. It can be proved that Lo is dense i n / 4  with respect  to the 
metric 11"112- 

We define the space 

M2 = {X = (XO,__o, 

X is a square-integrable mart ingale on 

(D, F, P) with respect  to 

(F,),_>o and Xo = 0 a lmost  surely (a.s.)} 

and 

M[  = {X e M2, 1" ~ X('r) is a continuous a.s.} 

We identify two X, X'  �9 M2 if "r ~ X, and -r ~ X'~ coincide a.s. 
We introduce the It6 stochastic integral by first introducing the stochastic 

integral with respect to an (F0-Brownian  mot ion as a mapp ing  

/-,2 3 �9 ~ I ( ~ )  �9 M~ 

Suppose  we are given an (F~)-Brownian motion B = (B('r)) on (~-)~ F, P). I f  
�9 Lo and 

cb(,r, to) = fo(co)l{,=o}(T) + ~ fii(OJ)[(,ri,,ti+ l)("r) 
i=0 
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we then set 

n-I  
I((I))(T, f.O) ~- ~ fi((o)(B(Ti+l, {.0) -- B (q'i, co)) 

i=o 

+L@o)(B(T, to) - B("r,, to)) 

for -r, < "r -< "r,+l, n ~ IN. Clearly, I((I)) can be expressed as 

~t~ 

/((~)(T) : ~ fi(O(T A Ti+I) -- B ( q  A ":)) 
i=o 

This sum is, in fact, a finite sum; here/% denotes the supremum. 
The l(Cb) ~ M~ defined likewise is called the stochastic integral of r 

E L2 with respect to the Brownian motion B(-r), and is denoted as f~ @(s, to) 
dB(s, w), or as f~ r dB(s). Clearly, 

l((x(I) + [3W)('r) = c~I((I))('r) + [31(W)('r) 

for each -r --> 0, a.s., and (I), xF ~ L2, (x, [3 ~ R. Thus, we remark that the 
stochastic integral l((I)) is a stochastic process; in fact, it is a martingale; for 
a fixed -r, the random variable l((I))(-r) is also called a stochastic integral. 

The first natural extension of this stochastic process comes from the 
fact that physical processes have a mean motion in addition to the fluctuation 
described by the Brownian process. (This is a recourse to 'intuition' or even 
to experimental observation; it is the central thesis of  this article that these 
two features are unified through a RCW connection.) Thus, a typical example 
is the stochastic process of the form 

X('r) = X (0) + f ( s )  ds + g(s) dB (ds) 

where f(s) and g(s) are suitable adapted process, and the last term is the 
stochastic integral with respect to the Brownian motion B = (B(-r)) defined 
above. Here the process f~f(s)  ds describes the mean motion, and thus X(T) 
as above describes a process decomposable into a process of bounded variation 
and a martingale. This structure is generalized to define a class of  stochastic 
processes called semimartingales. 

Let (1~ F, P) be a probability space, (F0r a reference family. Denote 
the following: 

M := family of all continuous locally square-integrable martingales 
M = (Mr) relative to (F,) such that M0 = 0, a.s. 

A := family of all continuous (F0-adapted processes A = (A,) such 
that A0 = 0, and "r ,-~ Ar is of bounded variation on every finite 
interval, a.s. 
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B := family of all (F0-predictable processes �9 = (~,)  such that, 
with probability 1, -r ~ ~ ,  is bounded on each bounded interval. 

Let X = (X0 be a continuous semimartingale, i.e., a process represented 
in the form 

X~= Xo + M~ + A~ (A.1) 

where Xo is an F0-measurable random variable, M = (M0 ~ M, and A = 
(A~) ~ A. Continuous semimartingales are also called quasimartingales, and 
the space of all quasimartingales is denoted as Q. Every X E Q is expressed 
uniquely (the Doob-Meyer  canonical decomposition) as in (A.I); M = Mx 
is called the martingale part and A = Ax is called the bounded variation 
part of X. 

For X, Y E Q, we say that X and Y are equivalent and write X ~ Y if, 
with probability 1, 

X(~)  - X ( s )  = Y(~) - Y(s) 

Clearly, -- is an equivalence relation. The equivalence class of X is 
denoted by dX, and is called the stochastic differential of X. Then, f~ dX(to) 
is, by definition, the process X(-r) - X(s). 

Let dQ = {dX: X ~ Q}, dM = {dM, M ~ M} and dA = {dA, A 
A}. We introduce the following operations on dQ: 

A (addition) dX + dY = d(X + Y), X, Y, E Q (A.2) 

P (product) dX"  dY  = d < Mx, Mr >,  X, Y ~ Q (A.3) 

where Mx, Mr are the martingale parts of X and Y, respectively, and then 
(Mx, Mr} is the covariance of X and Y. Finally, we introduce 

B (multiplication) if �9 e B, X e Q, then 

(d~ �9 X)  = X(O) + ~(s,  to) dMx(s) + �9 (s, to) dAx(s), 'r -> 0 

(A.4) 

is an element in Q. Hence, d (~  �9 X) is uniquely defined. We now define B- 
multiplication: an element �9 �9 dX of dQ is defined by 

�9 dX = d(d) �9 X) (A.5) 
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Now, we can prove that dQ, with the operations of addition, product, 
and B-multiplication, is a commutative algebra over B, i.e., a commutative 
ring with the operations A and P that satisfy the relations: 

�9 ( d X + d Y )  = ~ . d X + d P . d Y  

�9 ( d X "  d Y )  = (r �9 d X)  �9 d Y  

(alp + W)  . d X  = dP . d X  + W " d X  

(dp~)  �9 d X  = dp �9 (qt  �9 dX)  

for ~,  W ~ B and dX, d Y  ~ dQ.  

Also 

d Q  . d Q  C d A  

d A . d Q  = 0 

d Q  . d Q  . d Q  = O 

These properties follow straightforwardly: the first from the property of 
stochastic integrals that dQ is a commutative algebra over B, and the latter 
two from the fact that (Mx,  Mr)  e A, for X, Y E Q. 

The stochastic calculus of It6 hinges on the It6 formula, which we give 
next; for a proof see Gardiner (1993). Let Xl  . . . . .  Xd E Q,  Y = f ( X l  . . . . .  
Xd) E Q with f." C2(R d ~ R). Then 

1 
d Y  = ~ ( O f ) .  d X  ~ + -~ (O,Oj) . d X  i .  d X  a (A.6) 

where 

oJ  = ~ (x~ . . . . .  xd) 

OiOjf = 02f (X 1 . . . . .  Xd) 
OxiOxj 

Wiener processes can be characterized by the stochastic differentials. If 
dWl  . . . . .  dWd ~ d M  and dWi �9 dWj = ~OdT, i, j = 1 . . . . .  d, then (W1(T), 
. . . .  Wd('r)) is a d-dimensional Wiener process. 

We finally introduce a fourth operation, called symmetric Q- 
multiplication. 

1 
Y o d X  = X . d X  + -~ d X  . d Y  

f o r X a n d Y E  Q. 

1 
= Y .  d X  + -~ d (Mx,  Mr) (A.7) 
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We can now prove that dQ, with the operations of addition, multiplica- 
tion, and symmetric Q-multiplication, is a commutative algebra over Q, i.e., 
for X, y Z ~ Q, we have 

X o (dY + dZ)  = X o dY  + X o dZ  

(X + Y) o dZ = X o dZ + y o dZ  

X o ( d Y .  dZ)  = (X o dY) �9 dX  = X . ( d Y .  dZ)  

(X . Y) o dZ  = X o (V o dZ)  

For this, note that since dQ �9 dA = 0, we have 

X o d Y  = X . dY  

i f X o r Y E  A, and 

1 
(Z  o dX)  �9 dV = ( Z .  dX)  �9 dV + -~ ( d Z .  dX)  �9 dY  

= ( Z . d X ) . d V  

since dQ �9 dQ �9 dQ = 0. Then, 

X o (Yo  dZ)  = X . (Y  o dZ)  + 2 dX . d (Y  0 Z)  

~ l 
- - X .  { (Y.dZ)  + d Y .  dZ} + ~ dX . ( Y .  dZ)  

1 
= X .  ( V .  dZ)  + ~ { X .  ( d Y .  dZ)  + d X .  ( V .  dZ)}  

1 
= X .  ( V .  dZ)  + -~ d ( X .  Y) �9 dZ  

= ( X  . Y) o dZ  

The other properties follow easily. 
The main reason for introducing o is the most remarkable fact that the It6 

formula now gives the usual Newton-Leibniz transformation rules. Namely, if 
Xl . . . . .  Xd ~ Q and f E C3(R d --* R), then Y = f(XI . . . . .  Xd) satisfies 

dY  = Oif o d X  i 
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Indeed, 

1 
O.cf o d X  i = O.J" d X  ~ + ~ d(OvO �9 d X  i 

1 
= O.J" d X  i + "~(Oic3jf" d X  J" dX '  + c~jOkOif" d X  j "  d X  k"  d X  i) 

by the It6 formula; yet, since dQ �9 dQ - dQ = 0, the third term in the 
previous expression vanishes and from (A.6) we further obtain 

1 
Od" dXi  + -~ OiOjf " dXi " dXj = d Y  (A.8) 

We can now introduce the Stratonovich integral as the stochastic integral 
f ~ Y  o dX. Then, one proves that for any X, Y E Q, 

I0 Y o d X  = lim Y(Ti) + Y('ri_l) 
J~l-.o i=l 2 [X('r/) - X('ri-1)] 

A 3 .  D i f f u s i o n  P r o c e s s e s  o n  M a n i f o l d s  

We wish to introduce now a class of stochastic processes called diffusion 
processes, which are characterized by two properties, namely continuity of 
trajectories and the Markov property (Ikeda and Watanabe, 1981; Elwor- 
thy, 1982). 

Formally, they can be introduced as follows. Let S be a topological 
space, to which we attach a terminal point A so that S '  = S U {A} is called 
the state space; in our constructions, S'  will be the one-point compactification 
of spacetime. Let W(S) be the set of all mappings w: [0, co) ~ S'  such that 
there exists 0 --< ~(w) -< co with the following properties: 

(i) w('r) e S V'r ~ [0, ~(w)], and the mapping "r ~ [0, ~(w)] ~ w(T) 
is continuous 

(ii) w('r) -- A V~ -> ~(w). 

~(w) is called the lifetime of the trajectory w. We set here w(co) = A 
V w  ~ W(S) .  

A Borel cylinder set in W(S) is defined for some integer n, a sequence 
0 - < ' r l  < r2 < . . .  < ' r , , a n d a B o r e l s u b s e t A i n S ' "  = S' • 1 7 6  • S' (n 
times) as 7r~ I,..., ~,,(A), where ~r~l.~ 2 . . . . . .  . : W(S)  --* S n, 'rr.,l.~2 ' .. .,.~,,(w) = 
(w(rl) . . . . .  w(r,)). Let B(~'(S)) be the a-algebra W(S) generated by all 

Borel cylinder sets and let B,(W(S)) be the tr-algebra generated by all cylinder 
sets up to time r, i.e., sets expressed in the form "tr-l �9 ~,~2 ........ (A) with "r, --< "r. 
[Here we remark that for our constructions in which S is spacetime, the 
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parameter "r is not the relativistic spacetime coordinate, but an internal evolu- 
tion order parameter, which may be thought of  as a kind of  a Kaluza-Klein 
(n + 1)th coordinate.] A family of  probabilities {Px, x �9 S'} on (W(S), 
B(W(S))) is called Markovian if: 

(i) Px{w: w(O) = x} = 1 Vx  �9 S'. 
(ii) x �9 S ~ Px(A) is Borel-measurable for each A �9 B(W(S)). 
(iii) Va" > s - 0, A �9 B,(W(S)), and a Borel subset F in S', 

Px(A N {w: w('r) �9 F])  = fA Pw'(,l{W: W('C -- S) E F} �9 Px (dw') 

for every x �9 S'. 

For a Markovian system {Px, x �9 S'},  �9 �9 [0, ~), x �9 S', and a Borel 
subset F of S',  set 

P('r, x, F) = PAw: w(~) �9 F] 

Then, we have 

Px[w(rO �9 An, w('r2) �9 A~ . . . .  w(%) �9 An] 

= fA P(TI, X, dxI) fA P(T2-- Tl, Xl, dX2)... IA e('rn -'rn-l, Xn-l, dXn) 
1 2 n 

for 0 < a'l < "r2 < �9 �9 �9 < %, Ai �9 B(S'). The family {P('r, x, F)} is called 
the transition probability of  a Markovian system, and we have that two 
Markovian systems on S' with the same transition density coincide. 

Let a Markovian system {Px} be given. For each "r > 0, we set 

F,(W(S)) = n n B,+,F(W(S)) 
~>0 x~S' 

- -  l 

F~(W(S)) = VF~(W(S)) 
" r > O  

A mapping w �9 W(S) ~ cr(w) �9 [0, ~)  is called a stopping time if for 
every r --> 0, {w: o-(w) --- r} �9 F,(W(S)). For a stopping time o', set 

_ _  - -  i 

F,~(W(S)) = {A �9 F=(W(S)): A O {w: or(w) --< "r} �9 F,(W(S)) V'r ~ 0} 

The Markovian system {Px} is called a strongly Markov system if for 
I 

every "r --> 0, c ra  stopping time, A �9 F~(W(S)), and a Borel subset F of  S',  
we have that 

Px(A n {w: w(r + ~r(w)) �9 F}) = fa Pw'(~(w'))[w: w('r) �9 F] Px (dw') 

Vx E S'. 
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Then, a family of probabilities {Px}~s' on (W'(S), B(W(S))) is called a 
diffusion process if it is a strongly Markovian system. 

A stochastic process X = {X(-r)} on S' defined on a probability space 
(D, F, P) is called a diffusion process on S' if there exists a diffusion {PAges' 
such that, for almost all to, the mapping -r ~ X(-r) is in W(S) and the image 
measure on W(S) of this mapping coincides with P~(.) = fs' Px(',') Ix(dx), 
where Ix is the initial distribution of X, i.e., the Borel measure on S' defined 
by Ix(dx) = P{to: X(0, to) E dx}. 

If X = X('r) is a diffusion process, we set ~(to) = inf{t: X('r) = A}; 
then, with probability 1, [0, 6) ~ "r ~ X('r) is continuous and X('r) = A V'r 
-> 6; ~ is called the life of the diffusion process. 

Let C(S') be the Banach space of all real- or complex-valued, bounded, 
continuous functions defined on S', and let A: C(S') ~ C(S') be a linear 
operator with domain D(A). Let {Px, x �9 S'} be a system of  probability 
measures on (W(S), B(W(S))) such that x ~ P~(A) is Borel-measurable. Then, 
{Px} is called an A-diffusion if it is strongly Markov system satisfying the 
following conditions: 

(i) Px{w: w(O) = x} = 1 Vx �9 S'. 
(ii) f(w('r)) - f ( w ( 0 ) )  - fto(Af)(w(s)) ds is a (Px, B~(W(S)) martingale 

V f  �9 D(A), Vx. 

We have the following characterization. Suppose that {Px, x �9 S'} is a 
system of  probability measures satisfying (i) and (ii) above. Assume further 
that {P,} is unique, i.e., for any other system of probability measures {P'} 
on (W(S), B(W(S))) satisfying (i) and (ii) above, Px = P ' ,  Vx. Then {Px} is 
a A-diffusion. 

We shall be concerned with A-diffusions, where A is a second-order 
differential operator 

1 a2f + B~(x ) 0 
Af(x) = ~ g~f~(x) Ox~Oxf~ - ~  f 

where g~f~(x), f3~(x) are real, continuous functions on R", and (g~(x)) is 
symmetric: g~(x)  = gf~(x), and nonnegative definite: g " ~ , , ~  --> 0 V~ = 

Cr ), the (~'~) �9 R", and x �9 R". For domain of definition of A we take 2 n 

space of  all twice continuously differentiable functions with compact support. 
A-diffusions can be constructed in terms of  solutions of stochastic differ- 

ential equations. Let a = (cry(x)) �9 R" | R" such that x ~ a(x) is continuous, 
and g~(x)  = a~(x)cr~(x), so that r is a "square root" of (g~).  Clearly such 
a ~r exists, yet it may be nonunique; so we make a choice of ~r and fix it. 
This will not imply nonuniqueness of the A-diffusion; in fact, the diffusion 
{ P~, x e S' } turns out to be unique under adequate analytical conditions on 
a and the drift vector field B(x). These analytical conditions may be very 
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weak, such as Sobolev-like conditions, and still the stochastic flow generated 
by an A-diffusion defines diffeomorphism of M (Baxendale, 1984, Carverhill 
and Elworthy, 1983; Rapoport, 1996d). [Strictly speaking, it is the probability 
law of the two-point stochastic process { (X,(xl), X~(x2))}~_>0 on S' • S' which 
determines the A-diffusion; but we shall not go into this.] Consider the 
stochastic differential equation 

dX'~('r) = tr~(X('r)) dW~('r) +/V'(X('r)) dr, ct = 1 . . . . .  n (A.9) 

Now, for every x ~ R n, there exists a solution X(-r) of (A.9) such that 
X(0) = x. By It6's formula, Vf e C2(S) 

i f f(X( ' r))  - f ( x ) ( 0 ) )  = ~ (x(s))tr~(x(s)) dWa(S) 

+ (Af)(X(S)) ds 

Thus, the conditions (i) and (ii) of the definition of A-diffusion are 
satisfied. The system of probabilities {Px} satisfying (i) and (ii) is unique, 
under the already cited analytical conditions on tr and B. Yet, the construction 
we shall give below bypasses the necessity of considering a square root of 
the metric g. 

Let A0, A~ . . . . .  An be smooth vector fields on the smooth n-dimensional 
manifold M. Consider the Stratanovich s.d.e. 

dX('O = A~,(X('r)) o dW~('r) + Ao(X('r)) d'r (A.IO) 

Here W('r) denotes a standard Wiener process. Let ~?/= M tO {oo} be the 1- 
point compactification of M, and let if(M) = {w: [0, o0) ~ M such that w(0) 

M, and if w(x) = 0% then w('r') = oo V'r' --> "r}. 
A solution X = (X(-r)) of (A: 10) is any (F0-adapted ff'(M)-valued process 

(i.e., a continuous process on M with ~ as a trap) defined on a probability 
space provided with a reference family (F0 and an n-dimensional (F0-Wiener 
process W = (W0 with W(0) = 0, and such that for any compact supported 
smooth function on M, we have 

f (X( 'O) - f(X(O)) = (A f f ) (X (S ) )  o dW(S)  + (Aof)(X(S))  ds 

Note that the vector field A0 is the drift. 
We can now state the following fundamental result. 
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Theorem  A.1 Let {Px} be the probability law on if(M) of the solution 
X = X('r) of (A. 10) with the initial value X(0) = x. Then { Px}x~M is a diffusion 
process generated by the second-order differential operator 

Af'. = 1 A ~(Aof )  + Ao( f ) ,  V f  E C ~ ( M )  

Let us give the proof. Indeed, from (A.10) we get 

d f (X(r ) )  = Aof(X( ' r ) )  o d W , ( r )  + (Aaf ) (X(r ) )  d'r (A. 11) 

or, by definition of o, (A.11) becomes 

1 
(Ao f ) (X( r ) )  �9 dw'~(r) + ~ d ( A o f ) ( X ( r ) )  �9 dw ~( r )  (A.12) 

+ (A0f)(X(r)) dr 

Now, 

d(A~) (X( ' c ) )  = A,~(A~C')(X('r)) o dw~,(,r) + (AoA,f)(X(t)) dr  

so that the second term in (A.12) is 

d ( A J ) ( X ( ' O )  �9 dwf~(r) 

= A~(Af f ) (X( ' r ) )  o dw~(r) �9 dwf3(r) + (AoA~f ) (X(r ) )  d r .  dtof3(r) 

= A~(A~ f ) (X ( r ) )  �9 d w ~ ( r )  �9 dwf~(r) 

1 d(A,e413f)(X(r)) . dw~ ( r )  . dwf3(r ) 

+ (AoA~f) (X(r) )  d'r �9 dwf3(r) (A.13) 

N o w ,  the second and third terms of (A.13) vanish, since d Q  �9 dQ �9 d Q  = 0 
and dA �9 dQ = 0, respectively, and since dw'~(r) �9 dwf~('r) = d(~'f3"r) = ~'f~ 
dr, we are left in (A.13) with 

d ( A J ) ( X ( T ) )  �9 dwf3(r) = a ~ ( a t f f ) ( X ( r ) )  �9 ~'f~d'r = a~(AodO(X(r))  d r  

Therefore, from (A. 11)--(A. 13) we conclude that 

d f ( X ( r ) )  = (Ao f ) (X ( r ) )  " dw~(r )  + 1 (Ao~4odO(X(r)) d r  

+ (Aoj0(X('r)) dr  (A.14) 

so that 

d f ( X ( r ) ) - A f ( X ( r ) ) d ' r = d f ( X ( r ) ) - ( 1 A ~ A ~ + A o ~ ( X ( t ) ) d r  
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coincides with the martingale (A,d')(X('r)). dw~('r), and thus A is the infinitesi- 
mal generator of X('r). 
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